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Abstract. Strong pressure-induced effects in the thermal equilibrium properties of semi-
conducting glasses are revealed and theoretically analysed. The basic property under
consideration is the concentration of the negative-U centres which determine the mobility-
gap spectral structure and the related electron phenomena in the materials. For accessible
high pressures, 104 6 p 6 105 bar, a rapid increase of the concentration with growing
pressure is predicted. This holds for (‘weak’) negative-U centres formed in typical, ‘rigid’,
configurations for the vast majority of atoms, as both the mobility-gap width and the related
effective magnitude of the negative pair-correlation energy decrease with pressure. However,
at ambient (and low) pressure another type of centre, ‘strong’ negative-U centres formed in
glassy atomic soft configurations, predominate, whose concentration decreases with increasing
pressure. The resulting concentration of negative-U centres and some related characteristics are
shown to exhibit a non-monotonic pressure dependence with a minimum. Future experimental
tests of the corresponding theoretical relationships might determine the basic parameters of the
phenomenon for the materials under consideration.

1. Introduction

The purpose of the present paper is to reveal and theoretically describe significant effects
of accessible high pressurep (6(1–3)× 105 bar) in electron properties of semiconducting
glasses (SGs), for temperatures below the glass transition temperatureTg. In this connection
it is worthy of note that, generally speaking, only very high, rather inaccessible, pressures,
p > 107 bar, can give rise to strong transformations in the properties of crystalline materials
(except for those in which pressure-induced phase transitions occur at lower critical pressures
p < 106 bar, due to the existence of soft phonon modes) [1]. The situation in glasses in
general is different: global transformations in their structure and properties (not necessarily
phase transitions) may be expected at not very high pressuresp ≈ 105 bar, as a result of a
kind of softness characteristic of a noticeable proportion of localized atomic motion modes
(see below). In what follows, it is largely the pressure effects, affecting thermal equilibrium
electron properties related to the mobility-gap states of the SGs, that are discussed.

As is well known, anomalous atomic dynamical phenomena are characteristic of glasses
at ambient pressure; they are generally not observed for the corresponding crystals (see, e.g.,
[2, 3]). Low-temperature anomalies are observed in the thermal, dielectric, and acoustic
properties of glasses, which are universal in these materials, and are considered to be due
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to extra types of low-energy excitation in the atomic dynamics. Moreover, anomalous
electron properties (e.g., the coexistence of Fermi level pinning around the mobility-gap
middle and of a very weak thermal equilibrium ESR signal) were observed for the SGs
[4]. These properties have been attributed to anomalous charge carriers in the mobility
gap, suggested to be singlet electron (hole) pairs of negative correlation energyU and of
energy (per particle) around the Fermi levelζ : the so-called negative-U centres [2–4].
Both sets of anomalous properties can be theoretically described within a unified approach,
the soft-configuration model, in which nanometric medium-range order (MRO) atomic
configurations—soft configurations—of atomic concentrationca ≈ 10−2 are characteristic
of glasses [3]. Each soft configuration actually contains a single soft mode of motion
(x) which generally exhibits anharmonic features. The soft modes determine the universal
anomalous (compared to those of crystals) low-energy excitations in the atomic dynamics.
Moreover, interactions of electrons (holes) in the mobility gap with the soft modes give rise
to an anomalous type of extremely strong electron (hole) self-trapping, due to very large
distortions in the soft modes, which differs substantially from the well-known polaronic
self-trapping [3, 5]. Most of the soft configurations are (quasi)harmonic in the soft-mode
displacements, as are the common ‘rigid’ local configurations in the essential atomic motion
mode displacements(x):

V (x) ≈ V0(x) = Aηx2 for |x| < 1 (1.1)

with A the characteristic atomic elastic energy per mode of motion.
Small values of the random ‘softness’ parameterη, 0 < η 6 η∗ ≈ 0.1–0.2, are related

to the soft configurations, whereasη ≈ η0
∼= 1 corresponds to the common ‘rigid’ ones.

Then the negative-U centres are characterized by a spectrum of self-trapping energiesWj(η)

(<0) for a single electron(j = 1) or a singlet electron pair(j = 2) and of the pair-
correlation energyU(η) (<0). In particular, polaron-type relations would hold:

W2(η) ∼= W 0
2 (η) = −Q2/Aη = 4W 0

1 (η)
∼= 4W1(η) (1.2a)

and

U(η) ∼= U0(η) = −Q2/2Aη + Ud (1.2b)

if the ‘bare’ electron gap state under self-trapping were actually not hybridized with the
other gap states. In equations (1.2),Q stands for the electron–soft-mode coupling parameter,
andUd is the Hubbard energy in the localized bare state. However, the hybridization of
the bare electron state with the valence-band states becomes crucial as the typical bare
energyε, originally near the conduction-band mobility edgeE∗c , approaches the valence-
band mobility edgeE∗v during the self-trapping process. In fact, the expressions forW1(η)

and U(η) may significantly deviate from equations (1.2), as the strong influence of the
hybridization preventsU(η) from being positive whenU0(η) becomes positive (i.e.U(η)
remains negative); however, no such influence is available for states originally doubly
occupied, so in generalW2(η) ∼= W 0

2 (η) [3, 5].
The negative-U centres under consideration actually determine, from this viewpoint, the

gap-related electron properties of SGs observed at ambient pressure. The earlier models
[2, 4] can be considered as limit cases of the soft-configuration-model theory [3, 5]. The
thermal equilibrium concentrationc2 of the negative-U centres is related to their density of
states (DOS)g2(E) at the single-particle Fermi level,E = ζ , or to the bare single-particle
DOSg0(E

∗) at the corresponding mobility edgeE∗; e.g., for electrons at ambient pressure
in SGs,

10−4 6 c2e(0) ≈ g0(E
∗
c )wca(0) 6 10−3 (1.3)
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for typical g0(E
∗
c ) and band-tail widthw, i.e. with 10−2 6 g0(E

∗
c )w 6 10−1 (see, e.g., [2,

5]). Note that for ambient pressure the glass characteristicsX(p) are denoted asX(0)—e.g.,
ca(0) andEg(0). The estimation (1.3) agrees with the basic data concerning the gap-related
electron properties of the SGs at ambient pressure.

The problem under discussion is that of revealing and describing the basic pressure
effects in thermal equilibrium electron properties of SGs, such as the specific heatC(e)

and magnetic susceptibilityχ(e)m , which are largely determined by the pressure effects in
the concentrationc2e of the electronic negative-U centres (e.g.,C(e) ∝ c2e). Moreover, in
SGs, the intensities of (weakly) non-equilibrium processesI (e)q ∝ c2eW

(e)
q , with W(e)

q the
corresponding transition probability. Thus, the pressure effects inIq are also due to those
in c2e, rather than inWq , as strong effects are characteristic ofc2e, for high pressures at
least. An example is the contribution of thermal single-particle excitations of the negative-U

centres to the d.c. conductivity,1σdc(T , p) ∝ c2e(p) exp[−Ueff (p)/T ], with Ueff (p) the
effective magnitude of the negative correlation energy.

Hence, we focus in the present paper on the concentrationc2e(p) of the negative-
U centres. In what follows, as well as above, electron negative-U centres are explicitly
considered, the situation for hole ones being similar, with trivial substitutions.

The qualitative features of the model and the basic assumptions, as well as the
estimations of the pressure dependence of the basic parameters of the theory, are described
and analysed in section 2. The basic analytical expressions and approximations of the
theory are presented in section 3. The results of analytical and numerical calculations
for c2e(p) are given and discussed in section 4. The analysis is mainly concentrated on
temperatures not too close toTg and on high pressures in the semiconducting phase of the
materials in question. In this connection it should be noted that the SG is characterized by
the finite mobility-gap widthEg(p) which decreases with growing pressure up to a global
semiconductor–metal phase transition atp = pg, with Eg(pg) = 0 andpg ≈ (1–2)×105 bar
[6–8]. Some conclusions are presented in section 5.

2. Qualitative features and basic assumptions of the model

At low pressuresp � pg, as well as at ambient pressure, for whichEg(p) ∼= Eg(0) ≈ 2–
3 eV for SGs, the negative-U centres are formed due to the singlet-pair self-trapping under
consideration, which occurs in the soft configurations (1.1). In fact, the hybridization of
states becomes decisive as the bare electron energy is reduced during the self-trapping
process byδε ≈ W 0

2 (ηg) = Q2/Aη ≈ E∗c − E∗v = Eg(p). Then, the essential configuration
‘softness’ η ≈ ηg = Q2/AEg(p) mostly falls in the range 0< η ≈ ηg < η∗ for
Q ≈ 4–6 eV andA ≈ 50–100 eV, typical for SGs, and the effective magnitudeUeff (p)

of the negative correlation energy is large,Ueff (p) ≈ U0
eff (p)

∼= Eg(0)/2 � Ud for
realistic values ofUd [3]. In this sense, the negative-U centres are defined as ‘strong’.
However, negative-U centres can also be formed in typical ‘rigid’ configurations for
η∗ � η ≈ ηg 6 1—in materials with ‘narrow’ gapsEg(0) � 1 eV or in ‘wide’-gap
materials (e.g., SGs) forEg(0) > 1 eV, at high pressures withEg(p) � 1 eV. The
latter are defined as ‘weak’ negative-U centres, being characterized by small values of
Ueff (p) ≈ Eg(p)/2 � 1 eV. Negative-U centres of intermediate type are formed in
intermediate local atomic configurations. Since the atomic concentration isc0

∼= 1 for typical
‘rigid’ configurations, while it is much lower,ca(0) ≈ 10−2, for the soft configurations, one
can expect that the concentration of the (‘weak’) negative-U centres at highp, rather close
to pg, will be much higher thanc2e(0), 10−4 6 c2e(0) 6 10−3, for the ‘strong’ negative-U
centres at ambient pressure. Furthermore, as argued below (see equation (2.3), and also [3,
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9]), the concentration of the ‘strong’ negative-U centres in general decreases with growing
pressure. Hence, the total concentrationc2e(p) at first decreases with increasingp, and
then increases at high enough pressure in SGs forp < pg andT < Tg. The relationships
characterizing this basic pressure-induced effect predicted for SGs in the present paper are
derived and analysed in section 4.

The basic parameters of the negative-U centres in the theory under consideration are
the mobility-gap widthEg(p) and the effective width1η of the distribution densityℵ(η)
for the local configuration ‘softness’η.

As experimentally established,Eg(p) decreases with increasing pressure toEg(pg) = 0,
with the slope slightly varying [6, 7], which can be taken into account in numerical
calculations. Then,Eg(p) can be approximated (with corrections less than 10%) by

Eg(p) = Eg(0)(1− αgp) (2.1)

for p < pg ≡ α−1
g .

The functionℵ(η) can be approximated as follows [3]:

ℵ(η) = C1(η)η
−1
0 exp[−α(p)(1− z)2] ≡ C1(η)η

−1
0 φ(z). (2.2)

Here,C1(η) is a relatively slow function, 06 C1(η) 6 C1(η0), while 06 z ≡ η/η0 6 1
and α(p) ≡ η−1

c (p) at ηc(p) ≈ (1η(p))2. The resulting atomic concentration in a glass
(not too close toTg)

ca(p) =
∫ η∗

0
dη ℵ(η) ≈ ca(0) exp(−δα(p)) (2.3)

is of the correct order of magnitude forp = 0, ca(0) ≈ 10−2, at α(0) ∼= 10 andC0
1 ≈ 10.

Moreover,δα(p) = α(p)− α(0) (>0) increases with pressure, soca(p) decreases and the
soft configurations are suppressed on the pressure scalepη, 105 bar6 pη < 106 bar [3, 9].
This universal high-pressure phenomenon, due to the decrease of the width1η(p) of ℵ(η)
with growingp, is assumed to be rather well described in the approximation

δα(p) = α(p)− α(0) ∼= p/pα for pα = pη/α(0) (2.4)

for pα 6 p 6 pη at least. In fact the soft-configuration suppression, ultimately related to the
densification of the material, is strongest for the above-noted accessible high pressures [9].
It follows from the above that the concentration of the ‘strong’ negative-U centres, basically
related to the soft configurations, also decreases with pressure,c2e(p) ∼= c2e(0) exp(−δα(p))
(see equation (1.2)).

It is worth adding that a global transformation (not necessarily a phase transition;
cf. [10]) was observed in the elastic properties of amorphous semiconductors on increasing
the average coordination numberzav from zav < zc (SGs), for 2.67< zc < 3, to zav > zc
(e.g.,zav = 4 for a-Si). Moreover, one could also expect such a transformation in a given
SG with pressure increasing fromp � pη top > pη, as long aszav was observed to increase
with p, for dzav/dp 6 10−5 bar−1 [6]. Since, however, no such global transformation was
detected in SGs forp < pg, one may conclude thatpg 6 pη (see also [9]).

We should note that all of the other parameters of the theory (Q = Qc,v, Ud =
U
(e,h)
d , A,w; see equations (1.1)–(1.3)) can be approximated for actualp < pg as being

independent ofp. In fact, in the SGs, due to the chalcogen atom chemistry (the existence
of lone pairs) [11],

dEg/dp = dE∗v /dp = dDv/dp � dE∗c /dp = dDc/dp (2.5)

so the scalepc,v of variations ofQc,v with growing pressure can be estimated as follows:

|pc| > |pv| ≈ pgDv(p = 0)/Eg(p = 0) ≈ 3pg � pg (2.6)
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and Qc,v(p) ∼= Qc,v(0) for p < pg (Dc,v stands for the corresponding band width).
SinceDc,v is determined by the corresponding ‘site’ wave-function overlaps, it should
be substantially more sensitive to pressure than ‘site’ characteristics, such asUd , so one
can assume that alsoUd(p) ∼= Ud(0) for p < pg. The typical atomic elastic energy
A ≡ k0a

2
0/2 = M0ω0a

2
0/2, with k0,M0, andω0 the typical values of the spring constants,

atomic mass, and vibration frequency, anda0 the atomic length scale (a0
∼= 1 Å),

so dA/dp = 2A d ln(ω0)/dp. Since ca ≈ 10−2 and for the vast majority of atoms
d ln(ω0)/dp 6 10−6 bar−1 in a solid [12], it appears that it is indeed the case that
A(p) ∼= A(0) for p < pg. The band-tail widthw is generally considered as a measure of
the degree of disorder in the materials in question. The degree of disorder is not expected to
diminish under high pressure. The latter appears to affect the glass structure by destroying [3,
9] its atomic medium-range-order configurations [13] (equation (2.3)). Therefore, increasing
pressure is not expected to decreasew, and it is assumed thatw(p) ∼= w(0) for p < pg.

3. Basic relations and approximations

The basic relation applied here for calculatingc2e(T , p) is as follows:

c2e(T , p) =
∫ Eg(p)

0
dε g0(ε)

∫ H(p)

0
dη ℵ(η)8(2)

e (ε; η) (3.1)

with H(p) ∼= {η∗ for p � pg; η0 for 0 < pg − p � pg}. Here the bare density of states
(DOS) g0(ε) rapidly decreases asε drops away fromE∗c into the mobility gap (see, e.g.,
[4]):

g0(ε) = g0 exp[−((Eg − e)/w)µ] (3.2)

where in fact 16 µ 6 2. The bare energyε is referred to the valence-band mobility edge,
E∗v = 0, so 06 ε 6 E∗c = Eg, andg0 ≡ g0(E

∗
c ) ≈ (1/3)D0 for D0 ≈ Q ≈ 4–6 eV and

2w ≈ 0.1D0 for SGs. As usual, the Gibbs pair occupation

8(2)
e (ε; η) = exp(X2e)/Ze ∼= {1+ exp((E2e − ζ )/kBT )}−1 ≡ fF [E2e(ε; η)− 2ζ ] (3.3)

whereZe = 1+2 exp(X1e)+exp(X2e) andXj = (jζ −Eje(ε; η))/kBT for the bare energy
level (ε) nominally occupied byj electrons, with the energyEje of j self-trapped electrons
and the Fermi levelζ (per particle) referred to the energy of the empty state (E0e = 0
at j = 0) and to the valence-band mobility edge, respectively. For the system under
discussion for which the negative-U centres correspond to the ground state,8(2)

e � 8(1)
e

and 8(2)
e (ε; η) ∼= θ(2ζ − E2e(ε; η)) for low enoughT � T 0

eff (equation (3.5)), while
fF (E2e − 2ζ ) is the Fermi-like distribution related to the step functionθ(2ζ −E2e) for the
singlet electron-pair energies.

In fact, focusing in what follows on calculations and the analysis ofc2(T , p) ∼=
c2(0, p) ≡ c2(p) for low enoughT � T 0

eff , one may straightforwardly transform equation
(3.1) to the following expression:

c2e(T , p) ∼=
∫ Eg(p)

0
dε g0(ε)L2(ε;p)

L2(ε;p) =
∫ H(p)

0
dη ℵ(η)fF (E2e(ε; η)− 2ζ ).

(3.4)

Here

E2e(ε; η) = 2ε + Ud +W2e(η)
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Figure 1. The dependence on the bare energies of the integralL2 in equation (3.4) atT = 0
(solid line) and of its theorem-on-average approximation given as equation (3.8) (dashed line)
at: (a) γ 0 = 0.65 andEg = Eg(0) = 1; (b) γ 0 = 0.75 andEg = 0.50; (c) γ 0 = 0.77 and
E = 0.20. The main set of the parameter values is as follows:γ ∗ = Q2/Aη0 = 0.2 (equation
(3.5)),α(0) = 10, andpg/pη = 1 (equations (2.2)–(2.4)).

and

W2e(η) = W 0
2e(η) = −γ ∗η0/η

for γ ∗ ≡ Q2/Aη0. As usual in Fermi–Dirac statistics, the low-temperature estimation of
L2(ε) can be performed by expanding8(2)

e (ε; η) = fF [E2e(ε; η)− 2ζ ] in powers ofT , the
first term corresponding to the Fermi step functionθ [2ζ − E2e(ε; η)]. In fact

L2 = L20+1L2 (3.5)
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Figure 1. (Continued)

where

L20 ≡ L2|T=0 and |(1L2/L20)| = d1(T /Teff )
2+ d2(T /Teff )

4+ · · ·
for d1 ≈ 1 ≈ d2 with accuracy to an exponentially small correction:|δ2| <
(T/Teff ) exp[−(Teff /T )] at q = (γ ∗/kBTeff )1/2 6 1 for typical γ ∗ = Q2/Aη0

∼=
0.2Eg(0) � kBTg and T < Teff . Note also that the electroneutrality equationc2e(ζ ) =
c2h(ζ ) for the negative-U centres in the intrinsic SGs, for lowT � Teff andkBT � Eg/2,
gives rise to [5]

2ζ ∼= Eg. (3.6)

It follows from equations (2.2), (3.4)–(3.6) that forT � Teff andkBT � Eg/2

L2(ε) ∼= L20(ε) = ℵ0[η0

√
π/2

√
α(p)][8(tmax)−8(tmin)] (3.7)

where ℵ0η0 ≈ C1(η0), 0 < tmin = tmax(1 − zmax(ε)) < tmax =
√
α(p) for typical

α(p) > 10, and8(t) is the probability error integral, while 1> zmax(ε) = ηmax(ε)/η0 =
γ ∗/(2ε − Eg + Ud) > 0.

In accord with the limits of equation (3.7) forzmax → 0 andzmax → 1, a reasonable
analytical estimate ofL20(ε) can be obtained by applying the theorem on average, as the
integrand and its derivatives monotonically increase with growingz, from z = 0 to zmax ,
and the main contribution is due to an appropriate averagez0 rather close tozmax . The
result is that

L20(ε) = γ1ℵ0z
08(z0) (3.8)

wherez0 = γ 0zmax(ε) at γ 0 ∼= 1 ∼= γ1. It follows from numerical calculations (figure 1)
that the approximation (3.8) is reasonable (with accuracy to small corrections not exceeding
≈10%) forγ 0 ≈ 0.65–0.75 for 1> Eg/Eg(0) > 0.1 and a typical set of values of the other
parameters, e.g.,γ ∗ = Q2/Aη0

∼= 0.2Eg(0) andUd ∼= 0.1Eg(0).
The standard procedure of Fermi integral calculation gives rise to the following

estimation ofT 0
eff (p) ≡ Teff (εmax) for the bare energiesε = εmax = γ0Eg(p) for γ0

∼= 1,
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giving the major contribution to the integral in equation (3.4) (see [5], and table 1, in section
4):

kBT
0
eff (p) ≡ kBTeff (εmax) ∼= γ ∗/zκmax(εmax) = (γ ∗)1−κ(εmax + Ud)κ (3.9)

with κ ≈ 2 andzmax(εmax) ≡ zeff (p) = γ ∗(γ0Eg(p)+Ud)−1, and henceT 0
eff (0) > 10γ ∗ >

104 K � T 0
eff (pg) ≈ T 0

eff (0)(Ud/Eg(0))
κ > 300 K for the actual valuesEg(0) ≈ 2–

3 eV≈ 5γ ∗ > 10Ud . Then, for SGs,

T � T 0
eff (p) and kBT � Eg(p)/2 for T < Tg (3.10)

at least at pressures not too close topg at which the semiconductor–metal transition occurs.
One may conclude that the temperature effects in the concentration of the negative-U

centres are indeed weak:

c2e(T , p) ∼= c2e(0, p) ≡ c2e(p) (3.11)

over the glass range belowTg, or over most of it.
Eventually, the analytic approximation (3.1), for the relatively low temperatures given

in (3.10), gives rise to the expression

c2e(p) ≈ ℵ0

∫ Eg(p)

0
dε g0(ε)8[z0(ε)]z0(ε). (3.12)

4. The pressure dependence of the concentration of negative-U centres

In what follows the main results of the analytical and numerical calculations of equation
(3.12) are presented and analysed; they predict the non-monotonic pressure dependence of
the concentrationc2e(p) of the negative-U centres discussed qualitatively in section 2.

The standard rapid decrease of the bare DOSg0(ε) in the mobility gap (equation (3.2))
strongly favoursγ0 = εmax/Eg = 1, as if the main contribution to the integral in equation
(3.12) is due toε ∼= Eg(p). However, the energy dependence ofzmax(ε)φ(zmax(ε)) in the
integral may give rise to a deviation ofγ0 from unity, which has to be estimated from
analytical and numerical calculations. It follows from equations (3.2), (3.7), and (3.12) that

c2e(p) ≈ g0ℵ0γ
∗J (p;µ) (4.1)

J (p;µ) =
∫ yg(p)

ym(p)

dy f (y;µ) (4.2)

wheref (y;µ) = exp[8(y;µ)],8(y;µ) = −α(p)y2−ψ(y;µ)− ln(1−y), andψ(y;µ) =
[β(yg − y)/(1− y)(1− yg)]µ, for β = γ ∗γ 0/2w ≈ 1, for the typical valuesγ ∗ ≈ (0.1–
0.2)Eg(0) and 2w ≈ 0.1D0.

Moreover, y = y(ε) ≡ 1 − γ 0zmax(ε) < 1, for zmax(ε) > 0, and dy/dε < 0, so
1> yg(p) ≡ y(Eg(p)) > ym(p) ≡ y(εm(p)) for Eg(p) > εm(p).

In accordance with the expression forzmax(ε) in equation (3.7),

εm(p) = (Eg(p)− Ud)/2 and ym(p) = −∞ (4.3)

for pressure that is not too high,p < pu = pg(1− Ud/Eg(0)), for

Eg(0) > Eg(p) > Ud. (4.4)

However,εm(p) = 0, so all energiesε > 0 contribute toJ (p;µ) in the alternative case of
the limit high pressure,pu 6 p < pg, for

Ud > Eg(p) > ε > 0 and ym(p) < yg(p) < 0 (4.5)



Electron properties of semiconducting glasses 4433

at least for the actual valuesγ ∗γ 0 > 0.1Eg(0) > Ud implied below. Let us recall that the
hybridization of states prevents the transformation of the negative-U centres to positive-U
ones even at the limit high pressures (4.5) at which such a transformation would occur for
hybridization-free bipolarons (equation (1.2)). The reason for this is that the hybridization of
states gives rise to double occupation of the bare gap states by singlet pairs of valence-band
electrons, strongly favouring the formation of the negative-U centres [3, 5].

Then, equation (4.2) can be presented as follows:

J (p;µ) = J (µ)+ (p; yg)+ J (µ)− (p; ym) (4.6)

J
(µ)
± (p; a) ≡

∫ a

0
dy f (±y;µ).

Note that yg(p) > 0 for p 6 p0 = pg(1 + Ud/Eg(0) − γ ∗γ 0/Eg(0)), though
yg(p) < 0 for p0 < p < pu for p0 < pu, in the case (4.4), whereas onlyyg(p) < 0
for pg > p > pu, in the case (4.5). This holds in accordance with equation (3.9), as
the effective configuration ‘softness’ηeff (p) does not exceed the characteristic valueη0

(equation (2.2)) forp 6 p0 < pg, for the actual valuesγ ∗γ 0 > Ud mentioned above.
The formulae (4.1)–(4.3) and (4.6) characterizec2e(p) for p < pg, and may be applied

for the following calculations and discussion. As seen from the functionψ(y;µ) being only
dependent onµ, the features ofc2e(p) are expected to be weakly sensitive to variations of
µ, in the actual range 16 µ 6 2 at least. Hence, as a typical example, the pressure effects
in c2e(p) are discussed forµ = 2 (andµ is omitted below).

Table 1. The positions of the maximumεmax of L20 for different gap widthsEg .

Eg 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
εmax 1.0 0.88 0.78 0.68 0.58 0.47 0.35 0.22 0.16 0.10

Standard calculations for 1> Eg(p)/Eg(0) > 0.10 show thatf (y) exhibits a
pronounced maximum aty = M[p] ≡ M(Eg(p);α(0), β) with a comparable width

1M = |d28/dy2|−1/2
M > α−1/2 (4.7)

in the neighbourhood ofyg(p). For instance,M ∼= 0.79 for 1> Eg(p)/Eg(0) > 0.8 (yg ∼=
0.95), while M ∼= 0.75 for 0.8 > Eg(p)/Eg(0) > 0.2 (yg ≈ 0.93–0.84). In accord with
the corresponding numerical calculations (table 1), the ratioγ0 = εmax/Eg is indeed found
to be close to unity, and so equation (3.9) is relevant. This holds particularly for not very
small Eg(p)/Eg(0) > 0.4 with deviations less than 10%, whereas the deviations are less
than or about 25% forEg(p)/Eg(0) 6 0.4.

Similarly to equation (3.8), the expression forJ+(p; yg) is approximated as

J+(p; yg) ≈ yg(p) exp[8(y0)] = (yg(p)/(−y0(p))) exp{−α(p)y−2(p)− ψ(y0;p)} (4.8)

for y0(p) = λ0yg(p) andλ0
∼= 1, corresponding toγ0 rather close to unity. Moreover, the

fasterg0(ε) decreases in the gap (i.e., the largerµ), the closerλ0 andγ0 are to unity. Then,
one can expect thatJ+(p; yg) varies non-monotonically with pressure: increasingp gives
rise to a decrease ofyg(p) and ofy0(p) while it gives rise to an increase ofα(p) (equation
(2.4)), soJ+(p; yg) is suggested to exhibit a minimum in the range 06 p < pg (note that
φ(y0(p)) = 0 at λ0 = 1). On the other hand, lowε ≈ 0 give the major contribution to
J−(p; ym), which thus varies more weakly thanJ+(p; yg) with growing pressure. Then,
the suggested minimum ofc2e(p) for p = pmin < pg can be estimated from the equation

dc2e(p)/dp = 0∼= d[−α(p)y2
g(p)]/dp (4.9)
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Figure 2. The pressure dependence ofc2e(p) = c2e(T = 0, p) from equations (3.5) and (3.8)
(solid line) and from equations (3.12) and (4.1)–(4.2) (dashed line), forβ = 1 and the same set
of other parameter values as for figure 1.

at p = p0
min, in the reasonable approximation in which the variations ofJ (p) are mainly

due to those of the exponential in equation (4.8). In equation (4.9),p0
min stands for the

upper limitpmin, because the neglected lesser contributions toJ (p) give rise to an increase
of c2e(p) and so topmin 6 p0

min. The resulting expression

v ≡ p0
min/pg

∼= p0/pg − (2γ ∗γ 0pη/Eg(0)pg)
1/2 (4.10)

for 0< v < 1, e.g.,v ∼= 0.45 for p0/pg < 1 for the actual valueγ ∗γ 0/Eg(0) ≈ 0.2, is the
relevant root of the equation

v2− 2bv + c = 0

for

b = p0/pg + 3γ ∗γ 0/2Eg(0) and c = (p0/pg)
2− 2γ ∗γ 0pη/Eg(0)pg

for realistic values ofpg/pη, 1 > pg/pη > 0.5 (see section 2). As also expected
qualitatively,p0

min grows with increasingpg/pη: α(p) ∼= α(0) for p < pg for small enough
pg/pη, so practicallyJ (p) in general increases with increasingp (i.e., with decreasing
yg(p)). The results of numerical calculations forc2e(p), presented in figure 2 for the
realistic set of parameter values noted, confirm the relevance of, and make specific, the
above estimations:

pmin ∼= 0.35pg < p0
min
∼= 0.45pg (4.11)

where pmin and p0
min are of the same order. Moreover, as seen from figure 2, the

concentrationc2e(p) of the ‘weak’ negative-U centres at the limit high pressure, 0.9 6
p/pg < 1, is shown to be very high, 10−2 6 c2e(p) 6 10−1, much higher than
c2e(0), 10−4 6 c2e(0) 6 10−3, for the ‘strong’ negative-U centres at ambient pressure.
This prediction agrees with the qualitative features of the model in question as described
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in section 2. Indeed, the estimation (1.3) may be extended to the limit of high pressures as
follows:

c2e(p) ≈ g0(E
∗
c )wc0(p) ≈ 10−2–10−1 (4.12)

with c0(p) ∼= 1. It is taken into account here also that bothγ0(E
∗
c ) andw, as well as the

band widthD0 (unlike the gap width), depend only weakly onp for p < pg, in accordance
with section 2. Relevant experimental data for comparison to the prediction under discussion
could be obtained from measurements of the thermal equilibrium electron properties, e.g.,
the electron part of the specific heat of the SGs at low temperatures, which do not yet appear
to have been made.

Two basic effects and their competition appear to determine the non-monotonic
behaviour ofc2e(p) with increasing pressure.

(i) The distribution densityℵ(η) is narrowed, its width1η(p) decreasing with growing
densification of the glass forT = constant (see equation (2.4)), so the effective atomic
concentration of the localized soft modes, related to the strong self-trapping in question,
decreases. This effect will suppress the universal low-temperature properties of glasses,
and may result in a continuous (though possibly rather sharp) transformation of the glass
structure, for high pressure:p > pη > pg (see also [9]).

(ii) The effective ‘softness’ηeff (p) of the local atomic configurations, participating in
the pair self-trapping, increases with growing pressure. Since the distribution densityℵ(η)
increases with growingη (for 0 < η < 1), the concentrationc2e(p) of the negative-U
centres also increases, whereas the pair-correlation energyU(ηeff ), remaining negative,
becomes small in magnitude:Ueff = |U(ηeff )| ≈ Eg(p)/2, compared toEg(0)/2, so
the self-trapping in this sense becomes weak. In fact, negative-U centres in SGs under
high pressure can be created due to the self-trapping in question, even in typical ‘rigid’
configurations forηeff (p) ≈ ηeff (p0) = η0 = 1 (andp0 6 p < pg), as long asEg(p)
becomes so small that the pair self-trapping energyW2(η0) (equations (1.2)) is comparable
to Eg(p). As noted above, this type of self-trapping (strong atp = 0) is due to the
hybridization of states in the gap, which prevents the decay of the negative-U centres into
positive-U ones.

5. Concluding remarks

The basic relationships characterizing the strong high-pressure effects in the thermal
equilibrium electron properties of semiconducting glasses, associated with the negative-
U centres in the mobility gap, are derived and analysed in the present paper. Analytical
approximations and estimations, as well as the related results of the numerical calculations,
are presented for the concentrationc2(p) of the negative-U centres, forT andp not too close
to Tg andpg respectively—in fact, forT < T 0

eff and 2kBT � Eg(p). In this temperature
range the temperature effects are weak while the effects of pressure tend to become strong.
The most important effect of pressure is the predicted non-monotonic behaviour ofc2(p)

with increasing pressure, including the strong increase at high pressure and the pronounced
minimum atp = pmin which is of the same order aspg, but not too close to it. The origin
of the pressure effects is inherently related to the hybridization of states (decisive for the
formation of the negative-U centres) and to two other fundamental properties of the SG.
One of them is the suppression of the glassy soft modes of motion occurring because of the
general densification of the glass at high pressure (withT = constant) [9]. Another property
in question is the monotonic decrease of the gap widthEg with pressure from the substantial
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valueEg(0) ≈ 2–3 eV at ambient pressure down toEg = 0 for p = pg ≈ 105 bar at which
the global semiconductor–metal transition occurs [6–8]. Future experimental tests of the
theoretical relationships forc2(p) at pmin < p < pg, and forpmin/pg, might determine
the basic parametersηc(p) and pη/pg (in equations (2.3) and (2.4)) for the materials in
question.

We would also like to mention a few other effects at high pressure close topg:

(i) the increase of the concentrationc1(p) of the positive-U centres with growing
pressure [9];

(ii) the substantial increase of the overlap of the negative-U centres forp→ pg, which
can develop into the Anderson–Mott delocalization of the charge carriers around the Fermi
level in the gap [14]; and

(iii) the related low-temperature effects, such as the quasimetallic conductivity and
the superconductivity in the SG even forp < pg (cf. the non-standard superconductivity
observed in the SGs forT 6 10 K andp ∼ 105 bar) [8].

These and some other effects which follow from, and could compete to some extent
with, the basic effects considered in the present paper, at the limit of high pressuresp close
to pg, are to be discussed elsewhere.

To conclude, the materials under high pressure in question acquire new thermal
equilibrium electron (as well as dynamic) properties, at least when relevant long-lived
metastable (or polyamorphic [15]) ‘phases’ are produced.
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